Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatology ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870288

RESUMO

BACKGROUND AND AIMS: The liver has a remarkable capacity to regenerate, which is sustained by the ability of hepatocytes to act as facultative stem cells that, while normally quiescent, re-enter the cell cycle after injury. Growth factor signaling is indispensable in rodents, whereas Wnt/ß-catenin is not required for effective tissue repair. However, the molecular networks that control human liver regeneration remain unclear. METHODS: Organotypic 3D spheroid cultures of primary human or murine hepatocytes were used to identify the signaling network underlying cell cycle re-entry. Furthermore, we performed chemogenomic screening of a library enriched for epigenetic regulators and modulators of immune function to determine the importance of epigenomic control for human hepatocyte regeneration. RESULTS: Our results showed that, unlike in rodents, activation of Wnt/ß-catenin signaling is the major mitogenic cue for adult primary human hepatocytes. Furthermore, we identified TGFß inhibition and inflammatory signaling through NF-κB as essential steps for the quiescent-to-regenerative switch that allows Wnt/ß-catenin-induced proliferation of human cells. In contrast, growth factors, but not Wnt/ß-catenin signaling, triggered hyperplasia in murine hepatocytes. High-throughput screening in a human model confirmed the relevance of NFκB and revealed the critical roles of polycomb repressive complex 2, as well as of the bromodomain families I, II, and IV. CONCLUSIONS: This study revealed a network of NFκB, TGFß, and Wnt/ß-catenin that controls human hepatocyte regeneration in the absence of exogenous growth factors, identified novel regulators of hepatocyte proliferation, and highlighted the potential of organotypic culture systems for chemogenomic interrogation of complex physiological processes.

2.
Epilepsia ; 62(6): 1343-1353, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33954995

RESUMO

OBJECTIVE: Medial temporal lobe epilepsy (MTLE) is a drug-resistant focal epilepsy that can be caused by a broad spectrum of different inciting events, including tumors, febrile seizures, and viral infections. In human epilepsy surgical resections as well as in animal models, an involvement of the adaptive immune system was observed. We here analyzed the presence of T cells in various subgroups of MTLE. We aimed to answer the question of how much inflammation was present and whether the presence of T cells was associated with seizures or associated with hippocampal neurodegeneration. METHODS: We quantified the numbers of CD3+ T cells and CD8+ cytotoxic T cells in the hippocampus of patients with gangliogliomas (GGs; intrahippocampal and extrahippocampal, with and without sclerosis), febrile seizures, and postinfectious encephalitic epilepsy and compared this with Rasmussen encephalitis, Alzheimer disease, and normal controls. RESULTS: We could show that T cell numbers were significantly elevated in MTLE compared to healthy controls. CD3+ as well as CD8+ T cell numbers, however, varied highly among MTLE subgroups. By comparing GG patients with and without hippocampal sclerosis (HS), we were able to show that T-cell numbers were increased in extrahippocampal GG patients with hippocampal neuronal loss and HS, whereas extrahippocampal GG cases without hippocampal neuronal loss (i.e., absence of HS) did not differ from healthy controls. Importantly, T cell numbers in MTLE correlated with the degree of neuronal loss, whereas no correlation with seizure frequency or disease duration was found. Finally, we found that in nearly all MTLE groups, T cell numbers remained elevated even years after the inciting event. SIGNIFICANCE: We here provide a detailed histopathological investigation of the involvement of T cells in various subgroups of MTLE, which suggests that T cell influx correlates to neuronal loss rather than seizure activity.


Assuntos
Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/patologia , Contagem de Linfócitos , Neurônios/patologia , Convulsões/etiologia , Convulsões/patologia , Linfócitos T , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/cirurgia , Complexo CD3 , Linfócitos T CD8-Positivos , Epilepsia do Lobo Temporal/cirurgia , Ganglioglioma/patologia , Ganglioglioma/cirurgia , Hipocampo/patologia , Hipocampo/cirurgia , Humanos , Degeneração Neural/patologia , Esclerose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...